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Summary

Many studies have shown that the excitation and inhibition received by cortical neurons remain roughly
balanced across many conditions. A key question for understanding the dynamical regime of cortex is the
nature of this balancing. Theorists have shown that network dynamics can yield systematic cancellation
of most of a neuron’s excitatory input by inhibition. We review a wide range of evidence pointing to this
cancellation occurring in a regime in which the balance is loose, meaning that the net input remaining
a�er cancellation of excitation and inhibition is comparable in size to the factors that cancel, rather than
tight, meaning that the net input is very small relative to the cancelling factors. This choice of regime has
important implications for cortical functional responses, as we describe: loose balance, but not tight bal-
ance, can yield many nonlinear population behaviors seen in sensory cortical neurons, allow the presence
of correlated variability, and yield decrease of that variability with increasing external stimulus drive as
observed across multiple cortical areas.

In what regime does cerebral cortex operate? This is a
fundamental question for understanding cerebral corti-
cal function. The concept of a “regime” can be defined in
various ways. Here we will focus on a definition in terms
of the balance of excitation and inhibition: how strong
are the excitation and inhibition that cortical cells receive,
and how tight is the balance between them? As we will
see, the answers to these questions have important im-
plications for the dynamical function of cortex.

We first consider several more fundamental distinctions
in cortical regime. First, neurons may fire in a regular
or irregular fashion, where regular firing refers to emit-
ting spikes in a more clock-like manner, while irregular
firing refers to emi�ing spikes in a more random man-
ner, like a Poisson process. Cortex appears to be in an ir-
regular regime (Shadlen and Newsome, 1998; So�ky and

Koch, 1993), though some areas are less irregular than
others (Maimon and Assad, 2009). Second, neurons may
fire in a synchronous regime, meaning with strong cor-
relations between the firing of di�erent neurons, or an
asynchronous regime, meaning with weak (or no) corre-
lations. Cortical firing, particularly in the awake state,
generally appears to be in an asynchronous regime (Co-
hen and Kohn, 2011; Doiron et al., 2016; Ecker et al., 2014,
2010), although some conditions may show more syn-
chronous firing (DeWeese and Zador, 2006; Poulet and
Petersen, 2008; Stevens and Zador, 1998; Tan et al., 2014).
Thus, we will take cortex to be in an asynchronous irreg-
ular regime. Brunel (2000) first defined conditions on net-
works of excitatory and inhibitory neurons that led them
to operate in the asynchronous irregular regime.
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A third distinction is whether a network goes to a stable
fixed rate of firing for a fixed input (with noisy fluctua-
tions about that fixed rate given noisy inputs), or whether
it shows more complex behaviors, such as movement be-
tween multiple fixed points, oscillations, or chaotic wan-
dering of firing rates. We will focus on the case of a
single fixed point, which seems likely to reasonably ap-
proximate at least awake sensory cortex (see discussion
in Miller, 2016). The fixed point is taken to be stable,
meaning that the network dynamics cause firing rates
to return to the fixed point levels a�er small perturba-
tions. Finally, for a given fixed point, recurrent excitation
may be strong enough to destabilize the fixed point in
the absence of feedback inhibition; that is, if inhibitory
firing were held frozen at its fixed point level, a small per-
turbation of excitatory firing rates would cause them to
either grow very large or collapse to zero. In that case,
the fixed point is stabilized by feedback inhibition, and
the network is known as an inhibition-stabilized network
(ISN). Alternatively, the recurrent excitationmay be weak
enough to remain stable even without feedback inhibi-
tion. A number of studies have found strong evidence
that at least primary visual and auditory cortices are ISNs
both at spontaneous (Sanzeni et al., 2019) and stimulus-
driven (Adesnik, 2017; Kato et al., 2017; Ozeki et al., 2009)
levels of activity.

Note that for some of the distinctions we describe be-
tween regimes, there is a sharp transition from one
regime to the other, while for others the transition is
gradual. We use the word “regime” in either case to de-
scribe qualitatively di�erent network behaviors.

The assumption that cortex is in an irregularly-firing
regime (as well as its operation as an ISN) strongly points
to the need for some kind of balance between excita-
tion and inhibition. Stochasticity of cellular and synap-
tic mechanisms (Mainen and Sejnowski, 1995; O’Donnell
and van Rossum, 2014; Schneidman et al., 1998) and in-
put correlations (DeWeese and Zador, 2006; Stevens and
Zador, 1998) may contribute to irregular firing. How-
ever, a number of authors have argued that, assuming
inputs are un- or weakly-correlated, then irregular fir-
ing will arise if the mean input to cortical cells is sub-
or peri-threshold, so that firing is induced by fluctua-
tions from the mean rather than by the mean itself (Amit
and Brunel, 1997; Troyer and Miller, 1997; Tsodyks and
Sejnowski, 1995; van Vreeswijk and Sompolinsky, 1996).
This is referred to as the fluctuation-driven regime, as
opposed to the mean-driven regime in which the mean

input is strongly suprathreshold and spiking is largely
driven by integration of this mean input. The fluctuation-
driven regime yields random, Poisson-process-like firing,
because fluctuations are equally likely to occur at any
time, whereas the mean-driven regime yields regular fir-
ing.

Given the strength of inputs to cortex (to be discussed
below), the mean excitation received by a strongly-
responding cell is likely to be su�icient to drive the cell
near or above threshold. Therefore, for the mean input to
be subthreshold, the mean inhibition is likely to cancel a
significant portion of the mean excitation; that is, the ex-
citation and inhibition received by a cortical cell should
be at least roughly balanced (Tsodyks and Sejnowski,
1995; van Vreeswijk and Sompolinsky, 1996). Consis-
tent with the idea that inhibition balances excitation,
many experimental investigations have suggested that
cortical or hippocampal excitation and inhibition remain
balanced or inhibition-dominated across varying activ-
ity levels (Anderson et al., 2000; Atallah and Scanziani,
2009; Barral and Reyes, 2016; Dehghani et al., 2016; Galar-
reta and Hestrin, 1998; Graupner and Reyes, 2013; Haider
et al., 2006, 2013; Higley and Contreras, 2006; Marino
et al., 2005; Okun and Lampl, 2008; Shu et al., 2003; Wehr
and Zador, 2003; Wu et al., 2008, 2006; Yizhar et al., 2011;
Zhou et al., 2014).

Excitation and inhibition may be balanced in at least two
ways. First, inhibitory and excitatory synaptic weights
may be co-tuned, so that cells that receive more (or less)
excitatory weight receive correspondingly more (or less)
inhibitory weight (Bhatia et al., 2019; Xue et al., 2014).
This does not ensure balancing of excitation and inhibi-
tion received across varying pa�erns of activity. Second,
given su�iciently strong feedback inhibitory weights, the
network dynamics may ensure that the mean inhibition
and mean excitation received by neurons remain bal-
anced across pa�erns of activity, without requiring tun-
ing of synaptic weights. Here, we will focus on this sec-
ond, dynamic form of balancing.

As we will discuss, theorists have described mecha-
nisms by which inhibition and excitation dynamically re-
main balanced, keeping neurons in the fluctuation-driven
regime, without any need for fine tuning of parameters
such as synaptic weights. This dynamical balance can be
a “tight balance”, which we define to mean that the exci-
tation and inhibition that cancel are much larger than the
residual input that remains a�er cancellation, or a “loose
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balance”, meaning that the canceling inputs are compa-
rable in size to the remaining residual input (terms to de-
scribe balanced networks are not yet standardized; see
Appendix 1 for comparison of our usage to other nomen-
clatures). The question of whether the balance is tight or
loose has important implications for the behavior of the
network. Here we will review these issues and argue that
the evidence is most consistent with a loosely balanced
regime.

A Theoretical Problem: How to Achieve Input
Mean and Fluctuations That Are Both Compa-
rable in Size to Threshold?

How do cortical neurons stay in the irregularly fir-
ing regime? There are two requirements to be in the
fluctuation-driven regime, which yields irregular firing:
(1) The mean input the neurons receive must be sub- or
peri-threshold; (2) Input fluctuations must be su�iciently
large to bring neuronal voltages to spiking threshold suf-
ficiently o�en to create reasonable firing rates. We will
measure the voltage e�ects of a neuron’s inputs in units
of the voltage distance from the neuron’s rest to thresh-
old; this distance, typically around 20 mV for a corti-
cal cell (e.g., Constantinople and Bruno, 2013, Fig. 3K), is
equal to 1 in these units. Thus, a necessary condition for
being in the irregularly firing regime is that the voltage
mean driven by the mean input (henceforth abbreviated
to “the mean input”) should have order of magnitude 1,
which we write as O(1), or smaller. The second require-
ment above then dictates that the voltage fluctuations
driven by the input fluctuations from the mean (hence-
forth abbreviated to “input fluctuations”) should also be
O(1). In particular, this means that the ratio of the mean
input to the input fluctuations should beO(1). (Note, we
use the O() notation simply to indicate order of magni-
tude, and not in its more technical, asymptotic sense of
the scaling with some parameter as that parameter goes
to zero or infinity.)

Several authors have considered the requirements for
these conditions to be true (Renart et al., 2010; Tsodyks
and Sejnowski, 1995; van Vreeswijk and Sompolinsky,
1996, 1998). Following these authors, we assume the net-
work is composed of excitatory (E) and inhibitory (I) neu-
ron populations, which receive excitatory inputs from an
external (X ) population. The la�er could represent any
cortical or subcortical neurons outside the local cortical
network, for example, the thalamic input to an area of pri-

mary sensory cortex. As a simplified toy model of the as-
sumption that the network is in the asynchronous irreg-
ular regime, we assume that the cortical cells fire as Pois-
son processes without any correlations between them, as
do the cells in the external population.

Suppose that a neuron receives KE excitatory inputs. Sup-
pose these inputs produce EPSPs that have an exponen-
tial time course, with mean amplitude JE and time con-
stant τE, and have mean rate rE. Then the mean depolar-
ization produced by these excitatory inputs is JEKErEτE.
Defining nE = rEτE to be the mean number of spikes of an
input in time τE, we find that the mean excitatory input
to the neuron is

µE = JEKEnE (1)

Let σE denote the standard deviation (SD) of fluctuations
in this input. Assuming the spike counts of pre-synaptic
neurons are uncorrelated, their spike count variances just
add. Because they are firing as Poisson processes, the
variance in a neuron’s spike count in time τE is equal to
its mean spike count nE. Thus, the variance of input from
one pre-synaptic neuron is J2EnE, and so the variance in
the total input is KEJ2EnE and

σE = JE
√
KEnE (2)

Therefore the ratio of the mean to the SD of the neuron’s
excitatory input is

µE
σE

=
√
KEnE, (3)

independent of JE. Similar reasoning about the neuron’s
inhibitory or external input leads to all the same expres-
sions, except with E subscripts replaced with I or X sub-
scripts to represent quantities describing the inhibitory
or external input the cell receives.

Again assuming that the di�erent populations are uncor-
related so that their contributed variances add, the total
or net input the neuron receives has mean, µ, and stan-
dard deviation, σ, given by:

µ = µE + µX − µI (4)

σ =
√
σ2E + σ

2
X + σ

2
I (5)

We imagine that KE and KI are the same order of magni-
tude, O(K ) for some number K , and similarly nE and nI
are O(n) for some number n. We also assume µX and σX
are the same order of magnitude as µEorµI and σEorσI,
respectively, or smaller. Then, if

√
Kn is O(1), both µ and

σ can simultaneously be made O(1) with suitable choice
of the J’s (generically, i.e. barring special cases in which
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the elements of µ precisely cancel). This means that
the irregularly-firing regime is self-consistent: having as-
sumed that neurons are in the irregularly-firing regime,
we arrive at expressions for the mean and SD of their in-
put that indeed can keep the network in this regime.

If K is very large, however – large enough that
√
Kn� 1

– then the ratio of the mean to the SD of each type of
input, and hence of the net input, is much greater than
1. Van Vreeswijk and Sompolinsky (1996,1998) consid-
ered the case of such very large K and showed how the
network could remain in the AI regime. They proposed
choosing the J’s proportional to 1√

K
, so that the standard

deviations σE and σI areO(1) (Eq. 2), but then by Eq. 3 the
means µE and µI are large,O(

√
K ). Then, for the neurons

to be in the asynchronous irregular regime, inhibitory in-
put, −µI, must cancel or “balance” a su�icient portion of
the excitatory input, µE + µX, so that the mean input, µ,
is O(1).

If a neuron’s mean excitatory and inhibitory inputs very
precisely cancel each other, so that the mean net input µ
is much smaller than either of these factors alone, we say
there is tight balance. If the net input is more comparable
in size to the factors that are cancelling, we call this loose
balance. The two cases may be distinguished by the size
of a dimensionless balance index β:

β =
|µ|

µE + µX
(6)

Note that, using the above analysis, in the limit of
large K considered by Van Vreeswijk and Sompolinsky
(1996,1998), β ∼ 1√

K
. Tight balance means that the bal-

ance index is very small, β � 1; in loose balance, the
index is not so small, say 0.1 < β < 1, very roughly. As
we will see, whether the network is in tight or loose bal-
ance has important implications for the network’s behav-
ior and computational ability. (Note that, in general, the
degree of balance can be di�erent in di�erent neurons in
the same network. In the above discussion we assumed
that di�erent neurons of the same E/I type are statisti-
cally equivalent, e.g., in terms of the number and activity
of presynaptic inputs; this is the case in the randomly
connected network of Van Vreeswijk and Sompolinsky
(1996,1998). In that case β would not vary systematically
between neurons of the same type.)

The Tightly Balanced Solution

Van Vreeswijk and Sompolinsky (1996,1998) showed that,
for very large K , and hence very large Kn, and all J’s
∝ 1√

K
, the network dynamics would produce a tightly

balanced solution provided only that some mild (inequal-
ity) conditions on the weights are satisfied, without any
requirements for fine tuning. This is known more gen-
erally as the “balanced network” solution. To under-
stand this solution, we define the mean number of in-
puts, PSP amplitude, and time constant from population
B (B ∈ {E , I,X}) to a neuron in population A (A ∈ {E , I})
to be KAB, JAB and τAB respectively. We define the mean
e�ective weight from population B to a neuron in popu-
lation A as WAB = JABKABτAB. Le�ing rB be the average
firing rate of population B, then WABrB = JABKABnB, the
mean input from population B to population A. We as-
sume thatWABrB = O(

√
K ) for all A,B. The requirements

for balance are then that the mean net input to both ex-
citatory and inhibitory cells, uE and uI respectively, are
O(1), where (from Eqs. 1,4),

uE = WEErE −WEIrI +WEXrX (7)

uI = WIErE −WIIrI +WIXrX (8)

If we define the external inputs to the network IE =
WEXrX, II = WIXrX, then these equations can be wri�en
as the vector equation

u = Wr + I (9)

where u ≡
(

uE
uI

)
, r ≡

(
rE
rI

)
, I ≡

(
IE
II

)
, and W is

the weight matrixW =
(

WEE −WEI

WIE −WII

)
.

The balanced network solution arises by noting that the
le� side of Eq. 9 is very small (O(1)) relative to the indi-
vidual terms on the right (O(

√
K )). So we first find an

approximate solution r0 to Eq. 9 in which the small le�
side is replaced by 0 to yield the equation for perfect bal-
ance, i.e. all inputs perfectly cancelling: Wr0 + I = 0, or
r0 = −W−1I, where W−1 is the matrix inverse of W.
Note that r0 is O(1), because the elements of W and
I are all the same order of magnitude, so their ratio is
generically O(1). We can then write r as an expansion
in powers of 1√

K
, r = r0 + r1√

K
+ …, where r0, r1, … are

all O(1), to obtain a consistent solution: u = Wr1√
K

+ …
where the first term on the right is O(1), as desired, and
the remaining terms are very small (O

(
1√
K

)
or smaller).

4



The authors showed that, with some mild general con-
ditions on the weights W and inputs I, this tightly bal-
anced solution would be the unique stable solution of
the network dynamics. That is, for a given fixed input
I, the network’s excitatory/inhibitory dynamics will lead
it to flow to this balanced solution for the mean rates:
r = −W−1I +O

(
1√
K

)
.

We immediately see two points about the tightly bal-
anced (

√
Kn� 1) solution:

1. Mean population responses are linear in the inputs.
−W−1I is a linear function of the input I. Tight bal-
ance implies that nonlinear corrections to r ≈ r0 =
−W−1I are very small relative to this linear term,
except for very small external inputs, so mean re-
sponse r is for practical purposes a linear function
of the input.

2. External input must be large relative to the net input
and to the distance from rest to threshold. The exter-
nal input Imust have the same order of magnitude
as the recurrent inputWr0, so that balance can oc-
cur, Wr0 = −I, with rates that are O(1). If I were
smaller, the firing rates r ≈ r0 would correspond-
ingly be unrealistically small.

In the above treatment we focused on population-
averaged responses, rE and rI. We emphasize that the
balancing only applies to the mean input across neurons
of each type, and leaves una�ected input components
with mean of zero across a given type; while the mean
input is very large in the tightly balanced regime, zero-
mean input components can be O(1) and yet elicit O(1)
responses in individual neurons (see e.g. (Hansel and van
Vreeswijk, 2012; Pehlevan and Sompolinsky, 2014; Sadeh
and Ro�er, 2015)). Furthermore, even in the tightly bal-
anced regime, individual neurons can exhibit nonlinear-
ities in their responses, but these are washed out at the
level of population-averaged responses. We also note that
synaptic nonlinearities, e.g. synaptic depression, which
were neglected here, can allow a tightly balanced state
with nonlinear population-averaged responses (Mongillo
et al., 2012).

A Loosely Balanced Regime

As we have seen, if Kn is O(1), the mean and the fluc-
tuations of the input that neurons receive can both be

O(1) without requiring any balancing. Given that there is
both excitatory and inhibitory input, there will always be
some input cancellation or ”balancing” – some portion of
the input excitation will be cancelled by input inhibition,
leaving some smaller net input. When Kn is O(1), all of
these quantities – the excitatory input, the inhibitory in-
put, and the net input a�er cancellation – will generically
be O(1), and thus balancing is “loose” – the factors that
cancel and the net input a�er cancellation are of compa-
rable size, and the balance index β is not small.

However, the fact that there is some inhibition that can-
cels some excitation does not by itself imply interesting
consequences for network behavior. We will use the term
”loosely balanced solution” to refer more specifically to
a solution having two features: (1) the dynamics yields
a systematic cancellation of excitation by inhibition like
that in the tightly balanced solution. In particular, in the
loosely balanced networks on which we will focus, a sig-
nature of this systematic cancellation is that the net in-
put a neuron receives grows sublinearly as a function of
its external input (we will make this more precise below);
(2) this cancellation is “loose”, as just described. As we
will discuss, such a loosely balanced solution produces
various specific nonlinear network behaviors that are ob-
served in cortex.

Ahmadian et al. (2013) showed that such a loosely bal-
anced solution would naturally arise from E/I dynam-
ics for recurrent weights and external inputs that are
not large, provided that the neuronal input/output func-
tion, determining firing rate vs. input level, is supralinear
(having ever-increasing slope) over the neuron’s dynamic
range. They modeled this supralinear input/output func-
tion as a power law with power greater than 1 (Fig. 1).
Such a power-law input-output function is theoretically
expected for a spiking neuron when firing is induced by
input fluctuations rather than the input mean (Hansel
and van Vreeswijk, 2002; Miller and Troyer, 2002), and is
observed in intracellular recordings over the full dynamic
range of neurons in primary visual cortex (V1) (Priebe
and Ferster, 2008). Of course, a neuron’s input/output
function must ultimately saturate but, at least in V1, the
neurons do not reach the saturating portion of their in-
put/output function under normal operation. For the
loosely balanced solution to arise, some general condi-
tions on the weight matrix, similar to those for the tightly
balanced network solution but less restrictive, must also
be satisfied.
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Figure 1. The supralinear (power-law) neuronal
transfer function. The transfer function of neurons in
cat V1 is non-saturating in the natural dynamic range
of their inputs and outputs, and is well fit by a supralin-
ear rectified power-lawwith exponents empirically found
to be in the range 2-5. Such a curve exhibits increasing
input-output gain (i.e. slope, indicated by red lines) with
growing inputs, or equivalently with increasing output
firing rates. Gray points indicate a studied neuron’s aver-
agemembrane potential and firing rate in 30ms bins; blue
points are averages for di�erent voltage bins; and black
line is fit of power law, r = [V −θ]p+, where r is firing rate,
V is voltage, [x]+ = x , x > 0, =0 otherwise; θ is a fi�ed
threshold; and p, the fi�ed exponent, here is 2.79. Figure
modified from (Priebe et al., 2004).

In the presence of a supralinear input/output function,
the loosely balanced solution arises as follows. Whereas
previously we considered the e�ects of increasingK when
recurrent and external inputs were all O(

√
K ), now we

consider the more biological case of increasing external
input (i.e., stimulus) strength while recurrent weights are
at some fixed level. The supralinear input/output func-
tion means that a neuron’s gain – its change in output
for a given change in input – is continuously increas-
ing with its activation level. This in turn means that ef-
fective synaptic strengths are increasing with increasing
network activation. The e�ective synaptic strength mea-
sures the change in the postsynaptic cell’s firing rate per
change in presynaptic firing rate. This is the product of
the actual synaptic strength – the change in postsynaptic
input induced by a change in presynaptic firing – and the

postsynaptic neuron’s gain, hence the e�ective synaptic
strengths increase with increasing gains.

The increasing e�ective synaptic strengths lead to two
regimes of network operation. For very weak exter-
nal drive and thus weak network activation, all e�ective
synaptic strengths are very weak, for both externally-
driven and network-driven synapses. External drive to
a neuron is delivered monosynaptically, via the weak
externally-driven synapses. In contrast, assuming that
the network is inactive in the absence of external in-
put, network drive involves a chain of two or more weak
synapses: the weak externally driven synapses activate
cortical cells, which then drive the weak network-driven
synapses. From the same principle that x2 � x when
x � 1, the network drive is therefore much weaker than
the external drive. Thus, the input to neurons is dom-
inated by the external input, with only relatively small
contributions from recurrent network input. In sum, in
this weakly-activated regime, the neurons areweakly cou-
pled, largely responding directly to their external input
with li�le modification by the local network.

With increasing external (stimulus) drive and thus in-
creasing network activation, the gains and thus the ef-
fective synaptic strengths grow. This causes the relative
contribution of network drive to grow until the network
drive is the dominant input. At some point, the e�ective
E → E connections become strong enough that the net-
work would be prone to instability – a small upward fluc-
tuation of excitatory activities would recruit su�icient re-
current excitation to drive excitatory rates still higher,
which if unchecked would lead to runaway, epileptic ac-
tivity (and to ever-growing e�ective synaptic strengths
and thus ever-more-powerful instability). However, if
feedback inhibition is strong and fast enough, the inhi-
bition will stabilize the network, that is, it becomes an
ISN. This stabilization is achieved by a loose balancing of
excitation and inhibition, as we will explain in more de-
tail below. Thus, in this more strongly-activated regime,
the neurons are strongly coupled and are loosely balanced.
Note that the input driving spontaneous activity may al-
ready be strong enough to obscure the weakly coupled
regime, as suggested by the finding that V1 under spon-
taneous activity is already an ISN (Sanzeni et al., 2019).
As in the tightly balanced network, the network’s exci-
tatory/inhibitory dynamics lead it to flow to this loosely
balanced solution, without any need for fine tuning of pa-
rameters. Because this mechanism involves stabilization,
by inhibition, of the instability induced by the supralinear
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Figure 2. Loose vs. tight balance. We illustrate the external (blue), recurrent or within-network (green) and net
(orange, equal to external plus recurrent) inputs to a typical excitatory cell in a Stabilized Supralinear Network. At all
biological ranges of external input (stimulus) strength, the balance is loose, as exhibited by the le� set of three arrows
(representing the external, recurrent and net inputs): the net input is comparable in size to the other two. Nevertheless
the balance systematically tightens with increasing external input (right set of arrows), as the net input grows only
sublinearly with growing external input strength. At very high (possibly non-biological) levels of external input, the
balance can become very tight, with the net input much smaller in magnitude than the external and recurrent inputs.

input/output function of individual neurons along with
E → E connections, it has been termed the Stabilized
Supralinear Network (SSN) (Ahmadian et al., 2013; Rubin
et al., 2015).

To describe themathematics of this mechanism, we again
consider an excitatory and an inhibitory population along
with external input. We define the vectors r, u and I and
thematrixW as before. Then the power-law input/output
functionmeans that the network’s steady state firing rate
rSS for a steady input I satisfies

rSS = k(u)p+ = k(WrSS + I)p+ (10)

where (v)+ is the vector v with negative elements set to
zero, (v)p+ means raising each element of (v)+ to the power
p, p is a number greater than 1 (typically, 2 to 5, Priebe
and Ferster, 2008), and k is a constant with units Hz

(mV )p

(and the units ofW, r, and I are mV
Hz , Hz , and mV respec-

tively). It is convenient to absorb k into e�ective weights
and inputs by writing W̃ = k1/pW, Ĩ = k1/pI, so the equa-
tion becomes

rSS = (W̃rSS + Ĩ)p+ (11)

If we let ψ = ‖W̃‖ represent a norm of W̃ (think of it
as a typical total E or I recurrent weight received by a
neuron), and similarly let c = ‖̃I‖ represent a typical in-
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put strength, then it turns out the network regime is con-
trolled by the dimensionless parameter

α = ψcp−1. (12)

As we increase the strength of external drive and thus
of network activation, c and thus α is increasing. When
α � 1, the network is in the weakly coupled regime; for
α� 1, the network is in the strongly coupled regime; and
the transition between regimes generically occurs when
α is O(1) (Ahmadian et al., 2013).

The loosely-balanced solution then turns out to be of the
form

r = −W−1I + c
ψ

( r1
α1/p

+ …
)

(13)

where r1 is dimensionless andO(1), and the higher-order
terms (indicated by …) involve higher powers of 1

α1/p (see
Appendix 2). Equation 13 is precisely the same equa-
tion as for the tightly balanced solution, in the case
that the input/output function is a power law. In the
tightly balanced network, ψ and c are both O(

√
K ), so

α is O((K )p/2), i.e. very large, and the 1
α1/p in the sec-

ond term becomes O
(

1√
K

)
, as expected. The loosely-

balanced solution arises, however, when α isO(1). In par-
ticular, in the biological case of fixed weights but increas-
ing stimulus drive, and given the supralinear neuronal in-
put/output functions, the same E/I dynamics that lead to
the tightly balanced solution when inputs are very large
will already yield a loosely balanced solution when inputs
areO(1). The conditions for this loosely balanced solution
to arise are further discussed in Appendix 2.

The fact that the solution is loosely balanced can be seen
by computing the balance index, β (Eq. 6). The network
excitatory drive is O(ψr), the external drive is O(c), and
because the first term on the right side of Eq. 13 can-
cels the external input, the net input a�er balancing is
W (which is O(ψ)) times the 2nd term on the right side

of Eq. 13, or O
(

c
α1/p

)
= O

((
c
ψ

)1/p)
. Since 1/p < 1,

the net input thus grows sublinearly with growing exter-
nal input strength, c, as illustrated in Fig. 2. Moreover, it

follows that the balance index (Eq. 6) isO
(
c/α1/p

c+ψr

)
which

is O
(

1
α1/p

)
(assuming the order of magnitude of the re-

current input, ψr, is the same as or smaller than that of
the external input strength, c). Again, for the tightly bal-

anced solution this is very small,O
(

1√
K

)
, but the loosely

balanced solution arises when this is O(1).

In more complex models (involving many neurons with
structured connectivity and stimulus selectivity), loosely-
balanced solutions still arise when α isO(1). That is, even
in such cases the full nonlinear steady state equations,
Eq. (10), can yield biologically plausible solutions, and
when that happens the net inputs to activated neurons
grow sublinearly with growing external input strength,
and balance indices are O(1). The case of structured net-
works with stimulus selectivity is further discussed in Ap-
pendix 2.

We can now see that the loosely balanced regime di�ers
from the tightly balanced in the two points summarized
previously:

1. In the loosely balanced regime, mean population re-
sponses are nonlinear in the inputs. This is because,
when balance is loose, the second term in Eq. 13,
which is not linear in the input, cannot be ne-
glected relative to the first, linear term. In particu-
lar, the nonlinear population behaviors observed in
the loosely balanced regime with a supralinear in-
put/output function closelymatch the specific non-
linear behaviors observed in sensory cortex (Rubin
et al., 2015), as we will discuss below.

2. In the loosely balanced regime, external input can be
comparable to the net input and to the distance from
rest to threshold.

What Regime Do Experimental Measurements
Suggest?

As we have seen above, the samemodel can give a loosely
balanced solution (Eq. 13) when α is O(1) (e.g., when c
and ψ are both O(1)), but give a tightly balanced solu-
tion when α is large (e.g., when c and ψ are bothO(

√
K )).

Which of these regimes is supported by experimental
measurements?

Measurements of Biological Parameters

How large is
√
Kn? We saw in Eq. 3 that the ratio of

the mean to the standard deviation, µY/σY, of the input
of type Y (Y ∈ {E , I,X}) received by a neuron is equal
to
√
KYnY, where KY is the number of inputs of type Y

a given neuron receives and nY is the average number of
spikes one of these inputs fires in a PSP decay time τy
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KE = 200 KE = 1000 KE = 5000
rE = 0.1 Hz 0.6 1.4 3.2
rE = 1 Hz 2.0 4.5 10.0
rE = 10 Hz 6.3 14.1 31.6

Table 1. Values of
√
KEnE for varying KE and rE, for τ = 20ms.

(nY = rYτy, where rY is the average firing rate of one of
these inputs). Here we estimate

√
KEnE.

Note that
√
KYnY is actually an upper bound for the ratio

µY/σY for a given input type, because we have neglected
a number of factors that would increase fluctuations for
a given mean. These include (i) correlations among in-
putswhich, even if weak, can significantly boost the input
SD, σY, without altering input mean; (ii) variance in the
weights, JY, which would increase the estimate of σY by a

factor
√
〈J2Y〉 / 〈JY〉

2; and (iii) network e�ects that can am-
plify input variances by creating firing rate fluctuations,
although this amplification may be small for strong stim-
uli (Hennequin et al., 2018). Furthermore, the ratio µ/σ of
total input is expected to be smaller than the ratio µY/σY
for any single type. This is because σ2 involves the sum
of three variances (Eq. 5), while µ involves a di�erence of
one mean from the sum of two others (Eq. 4), represent-
ing the e�ect of loose balancing.

Given these considerations, we are primarily concerned
with estimating the overall magnitude of

√
KEnE rather

than detailed values. If this magnitude is very much
larger than the observed µ/σ ratio in vivo, then tight bal-
ancing may be needed to explain the in vivo ratio. To esti-
mate the in vivo µ/σ ratio, we note that, in anesthetized
cat V1, σ varies from 1 to 7mV and µ ranges from 0 to 15
mV (20 mV in one case) for a strong stimulus (Finn et al.,
2007; Sadagopan and Ferster, 2012). While these authors
did not give the paired µ and σ values for individual cells,
it seems reasonable to guess from these values that the
value of µ/σ for the total input to these cells is generally
in the range 0−15. Finn et al. (2007) also reported that, at
the peak of a simple cell’s voltage modulation to a high-
contrast dri�ing grating, the ratio σ/µ had an average
value of about 0.15 (here, we are taking µ to be the mean
voltage at the peak). This suggests that the average value
of µ/σ at peak activation is around 1/0.15 = 6.7.

How large is
√
KEnE? In a study of input to excitatory

cells in layer 4 of rat S1 (Schoonover et al., 2014), the
EPSP decay time τE was around 20 ms. From 1800 to
4000 non-thalamic-recipient spines were found on stud-

ied cells which, with an estimated average of 3.4 synapses
per connection between layer 4 cells (Feldmeyer et al.,
1999), corresponds to a KE – the number of other corti-
cal cells providing input to one cell – of 530 to 1200. If
rE is expressed in Hz, then

√
KEnE ranges from 3.3

√
rE to

4.9
√
rE. Thus, even if average input firing rates were 10

Hz, which would be very high for rodent S1 (Barth and
Poulet, 2012) (note that the average is over all inputs, not
just those that are well driven in a given situation, and
so is likely far below the rate of a well-driven neuron),
these ratios would be 10.4−15.5. For more realistic rates
of 0.1−1Hz (Barth and Poulet, 2012), these ratios would
be 1.0−4.9. All of these are comparable in magnitude to
observed in vivo levels of µ/σ.

More generally, estimates across species and cortical ar-
eas of the number of spines on excitatory cells, and thus
of the number of excitatory synapses they receive, range
from 700 to 16,000, with numbers increasing from pri-
mary sensory to higher sensory to frontal cortices (Ama-
trudo et al., 2012; Elston, 2003; Elston and Fujita, 2014; El-
ston andManger, 2014). Estimates of themean number of
synapses per connection between excitatory cells range
from 3.4 to 5.5 across di�erent areas and layers studied
(Fares and Stepanyants, 2009; Feldmeyer et al., 1999, 2002;
Markram et al., 1997). These numbers yield a KE of 130
to 4700. In Table 1, we show the value of

√
KEnE for KE

ranging from 200 to 5000 (rounded upward to bias results
most in favor of a need for tight balancing) and for rates
rE of 0.1 to 10 Hz. The results are all comparable to the
µ/σ’s observed in vivo, except for the most extreme case
considered (KE = 5000, rE = 10Hz), and even that case
is only o� by a factor of 2. Thus, the numbers strongly
argue that tight balancing is not needed for the ratio of
voltage mean to variance to have values as observed in
vivo.

External input is comparable in strength to net in-
put. Several studies have silenced cortical firing while
recording intracellularly to determine the strength of ex-
ternal input, with cortex silenced, relative to the net in-
put with cortex intact. These find the external input to
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be comparable to the net input, consistent with the loose
balance scenario, rather thanmuch larger as the tight bal-
ance scenario requires.

Ferster et al. (1996) cooled V1 and surrounding V2 in anes-
thetized cats to block spiking of almost all cortical cells,
both excitatory and inhibitory, leaving axonal transmis-
sion (e.g. of thalamic inputs) intact, though with weak-
ened release. By measuring the size of EPSPs evoked by
electrical stimulation of the thalamic lateral geniculate
nucleus (LGN) in thalamic-recipient cells in layer 4 of V1,
they could estimate the degree of voltage a�enuation of
EPSPs induced by cooling. Correcting for this a�enua-
tion, they estimated that the first harmonic voltage re-
sponse to an optimal dri�ing luminance grating stimulus
of a layer 4 V1 cell was, on average, about 1/3 as great
with cortex cooled as with cortex intact, suggesting that
the external input to cortex is smaller than the net input
with cortex intact. Chung and Ferster (1998) and Finn
et al. (2007) assayed the same question by using cortical
shock to silence the local cortex for about 150 ms, during
which time the voltage response to an optimal flashed
grating was measured. They found that on average the
transient voltage response in layer 4 cells with cortex si-
lenced was about 1/2 the size of that with cortex intact
(Chung and Ferster, 1998), and more generally ranged
from 0% to 100% of the intact cortical response (Finn et al.,
2007). This again suggests that the external input to cor-
tex is smaller than the net input, i.e. the external input is
O(1), consistent with loose but not tight balance.

Total excitatory or inhibitory conductance is com-
parable to threshold. The above results suggest that
depolarization due to thalamus alone is less than that in-
duced by the combination of thalamic and cortical ex-
citation plus cortical inhibition, i.e. a�er cortical ”bal-
ancing” has occurred. One can also ask what propor-
tion of the total excitation is provided by thalamus. This
has been addressed in voltage-clamp recordings in anes-
thetized mice by silencing cortex through light activa-
tion of parvalbumin-expressing inhibitory cells express-
ing channelrhodopsin. In layer 4 cells of V1 (Li et al.,
2013b; Lien and Scanziani, 2013) and primary auditory
cortex (A1) (Li et al., 2013a), mean stimulus-evoked ex-
citatory conductance with cortex silenced was estimated
to be 30-40% of that with cortex intact.

This tells us that the external and cortical contributions
to excitation are comparable. How large are they com-
pared to the excitation needed to depolarize the cell from

rest to threshold, which is typically a distance of about
20 mV (Constantinople and Bruno, 2013)? With cortical
spiking intact, these authors (Li et al., 2013a; Lien and
Scanziani, 2013) found mean stimulus-evoked peak exci-
tatory currents ranging from 60 to 150pA for various stim-
uli. Even assuming a membrane resistance of 200 MΩ,
which seems on the high end for in vivo recordings (Li
et al. (2013a) reported input resistances of 150−200 MΩ),
these would induce depolarizations of 12 to 30 mV; that
is, the total excitatory current is comparable to threshold,
i.e. it is O(1).

A similar result can be found from decomposition of exci-
tatory and inhibitory conductances from current-clamp
recordings at varying hyperpolarizing current levels. In
cat V1 cells for an optimal visual stimulus, one finds that
peak excitatory and inhibitory stimulus-induced conduc-
tances, gE and gI respectively, are typically < 10nS and
almost always < 20nS, on top of stimulus-independent
conductances (gL, for leak conductance) around 10nS
(Anderson et al., 2000; Ozeki et al., 2009). A study
of response to whisker stimulation in rat barrel cortex
found excitatory and inhibitory conductances of ≤ 5ns
(Lankarany et al., 2016). The depolarization that the
stimulus-induced excitatory conductance would induce
by itself is gE

gE+gL
VE , where VE is the driving potential of ex-

citatory conductance, about 50 mV at spike threshold of
around −50 mV (e.g. Wilent and Contreras, 2005). Using
the cat V1 numbers, this means that the depolarization
driven by excitatory conductance is typically < 25 mV
and almost always < 33 mV. Hyperpolarization driven
by the inhibitory conductance alone would be 0.4 to 0.6
times these values, given inhibitory driving force of −20
to −30 mV at spike threshold. These values are all quite
comparable to the distance from rest to threshold, ∼ 20
mV, that is, they are O(1).

How large is the expected mean excitatory input?
We have seen that the expected mean depolarization in-
duced by recurrent excitation is JEKEnE , where JE is the
mean EPSP amplitude. Based on the measurements of
Lien and Scanziani (2013) and Li et al. (2013b), discussed
above, total excitation may be about 1.5 times greater
than recurrent excitation. JE can be di�icult to estimate,
because some of the KE anatomical synapses may be very
weak and not sampled in physiology, and because synap-
tic failures, depression, or facilitation can alter average
EPSP size relative to measured EPSP sizes. Furthermore,
measurements are variable, for example JE for layer 4 to
layer 4 connections in rodent barrel cortex has been es-
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timated to be 1.6 mV in vitro (Feldmeyer et al., 1999) vs.
0.66 mV in vivo (Schoonover et al., 2014). If we assume
typical values for JE of 0.5− 1 mV, then 1.5JEKEnE would
exceed 75 mV for

√
Kn > 7 − 10 and exceed 150 mV

for
√
Kn > 10 − 14 (compare values of

√
Kn in Table 1).

We can very roughly guess that neural responses may be-
come be�er described by tight rather than loose balance
somewhere in this range of mean excitatory input (and
corresponding

√
Kn). While the measurements of exci-

tatory currents and conductances described above argue
that such a range is not reached in primary sensory cor-
tex, it could conceivably be reached (Table 1) in areas with
higher KE , e.g. frontal cortex.

Nonlinear Behaviors

Sensory cortical neuronal responses display a variety of
nonlinear behaviors that, as we’ll describe, are expected
from the SSN loosely balanced regime but not from the
tightly balanced regime. Many of these nonlinearities
are o�en summarized as ”normalization” (Carandini and
Heeger, 2012), meaning that responses can be fit by a phe-
nomenological model of an unnormalized response that
is divided by (normalized by) some function of all of the
unnormalized responses of all the neurons within some
region. To describe these nonlinear behaviors, we must
first define the classical receptive field (CRF): the local-
ized region of sensory space in which appropriate stimuli
can drive a neuron’s response.

One nonlinear property is sublinear response summation:
across many cortical areas, the response to two stimuli si-
multaneously presented in theCRF is less than the sumof
the responses to the individual stimuli, and is o�en closer
to the average than the sum of the individual responses
(reviewed in Carandini and Heeger, 2012; Reynolds and
Chelazzi, 2004). An additional nonlinearity is that the
form of the summation changes with the strength of the
stimulus: summation becomes linear for weaker stimuli
(Heuer and Bri�en, 2002; Ohshiro et al., 2013). It is of-
ten di�icult to determine if such nonlinear behaviors are
computed in the recorded area or involve changes in the
inputs to that area. However, some recent experiments
studied summation of response to an optogenetic and a
visual stimulus, a case in which the inputs driven by each
stimulus should not alter those driven by the other. Sub-
linear summation of responses to these stimuli was found
(Nassi et al., 2015; Wang et al., 2019, but see Histed, 2018),
which became linear for weak stimuli (Wang et al., 2019).

Another set of nonlinearities involve interaction of a CRF
stimulus and a “surround” stimulus, which is located out-
side the CRF. Across many cortical areas, surround stim-
uli can suppress response to a CRF stimulus (“surround
suppression”; reviewed in Angelucci et al., 2017; Rubin
et al., 2015), but this e�ect varies with stimulus strength.
When the center stimulus is weak, a surround stimulus
can facilitate rather than suppress response (Ichida et al.,
2007; Polat et al., 1998; Sato et al., 2014; Schwabe et al.,
2010; Sengpiel et al., 1997). Similarly, the summation field
size – the size of a stimulus that elicits strongest response,
before further expansion yields surround suppression – is
largest for weak stimuli and shrinks with increasing stim-
ulus strength (Anderson et al., 2001; Cavanaugh et al.,
2002; Nienborg et al., 2013; Sceniak et al., 1999; Shushruth
et al., 2009; Song and Li, 2008; Tsui and Pack, 2011). The
summation field size in feature space – the optimal range
of simultaneously presented motion directions in mon-
key area MT – similarly shrinks with increasing stimulus
strength (Liu et al., 2018).

Additional nonlinearities include a decrease, with in-
creasing stimulus strength, in the ratio of excitation to
inhibition received by neurons (Adesnik, 2017) and in the
wavelength of a characteristic spatial oscillation of activ-
ity (Rubin et al., 2015).

All of these nonlinear cortical response properties, and
more, follow naturally (Ahmadian et al., 2013; Rubin et al.,
2015) from the two regimes of the loosely balanced sce-
nario with a supralinear input/output function, along
with simple assumptions on connectivity (e.g. that con-
nections decrease in strength and/or probability with
spatial distance, e.g. Markov et al., 2011, or with di�er-
ence in preferred features, e.g.Cossell et al., 2015; Ko et al.,
2011). In contrast, as described previously, the tightly bal-
anced scenario causes population-averaged responses to
be linear responses to the input (individual neurons, but
not the population average, may have nonlinear behav-
iors), and thus appears inconsistent with these nonlin-
ear cortical behaviors, which in most cases are consis-
tent enough across neurons that they should character-
ize the mean population response. Synaptic nonlineari-
ties can give nonlinear population-averaged behavior in
the tightly balanced regime (Mongillo et al., 2012), but
it has not been claimed or demonstrated that this could
produce specific nonlinearities like those seen in cortical
responses.
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Correlations and Variability

Across many cortical systems, the correlated component
of neuronal variability is decreased when a stimulus is
given, with variability decrease seen both in neurons that
respond to the stimulus and those that don’t respond
(Churchland et al., 2010). This is also naturally explained
by the loosely balanced SSN network (Hennequin et al.,
2018). In the strongly coupled regime of the loosely
balanced SSN network, increasing stimulus strength in-
creases the strength with which correlated pa�erns of ac-
tivity inhibit themselves, thus damping their responses
to input fluctuations. The tightly balanced state repre-
sents the end state of this process – a fully asynchronous
regime in which correlations are completely suppressed
(Renart et al., 2010; van Vreeswijk and Sompolinsky, 1998;
with dense connectivity, the mean correlation is propor-
tional to 1/K , and the standard deviation of the distribu-
tion of correlations is proportional to 1/

√
K Renart et al.

(2010); recall that K is meant to be a very large number
to achieve the tightly balanced state). Thus, the tightly
balanced state appears incompatible with the observed
decrease in correlated variability induced by a stimulus,
because the state has essentially no correlated variabil-
ity. However, it should be noted that variants of the
tightly balanced network involving structured connectiv-
ity can yield finite correlated variability among prefer-
entially connected neurons while maintaining tight bal-
ance, although average correlation over all neuron pairs
can still go to zero with increasing

√
K (Litwin-Kumar

et al., 2012; Rosenbaum et al., 2017).

Discussion

We have seen that many independent lines of evidence
are all consistent with cortex being in a loosely balanced
regime, and are inconsistent with tight balance. We de-
fine balance to mean that the dynamics yields a system-
atic cancellation of excitation by inhibition; a signature
of this for the loosely balanced scenario that we con-
sider is that the net input a neuron receives a�er can-
cellation grows sublinearly as a function of its external
input. Loose balance means that the net input a�er can-
cellation is comparable in size to the factors that cancel,
whereas tight balance means that the net input is very
small relative to the cancelling factors. In both cases, the
net input a�er cancellation is comparable in size to the
distance from rest to threshold so that neuronal firing can

be in the fluctuation-driven regime that produces irregu-
lar firing like that observed in cortex.

One line of evidence for loose balance involves a vari-
ety of measurements on the numbers and/or strengths of
the inputs cells receive, including spine counts, strengths
of external and total input, and strengths of excitatory
and of inhibitory input. These measurements show that
the expected ratio of mean to standard deviation of the
network input before any tight balancing is already con-
sistent with the ratios observed for a cell’s net input as
judged by its voltage response. That is, tight cancella-
tion is not needed to achieve the ratios observed. These
measurements further show that external input and net-
work input are comparable in size to the net input re-
maining a�er cancellation, and that they and the total
excitatory and total inhibitory input are all comparable to
the distance from rest to threshold, consistent with loose
but not tight balancing. Other lines of evidence include
a variety of nonlinear population response properties of
sensory cortical neurons, as well as the presence of corre-
lated variability in neural responses and its decrease upon
presentation of a stimulus, all of which emerge naturally
from loose balance with a supralinear input/output func-
tion, but appear largely incompatible with tight balance.

It should be emphasized that the number of excitatory
synapses received by an excitatory cell, KE , increases
from primary sensory to higher sensory to frontal cor-
tex (e.g. Elston, 2003). Higher numbers are expected to
push in the direction of tighter balance. The expected ra-
tio of input mean to standard deviation and the expected
size of the mean input both can become high enough to
potentially yield tight balance for the highest KE ’s, par-
ticularly if higher average firing rates rE are assumed.
Our other arguments depend largely, but not entirely, on
measurements from sensory cortex. The measurements
of net input and external input are all from primary sen-
sory cortex. The studied nonlinear response properties
are primarily from both lower and higher visual cortices
(reviewed in Rubin et al., 2015). Suppression of correlated
variability by a stimulus, however, has been observed in
frontal and parietal as well as sensory cortex (Churchland
et al., 2010). In sum, while the evidence strongly favors
loose balance in sensory cortex, the evidence as to the
regime of frontal cortex is weaker.

The seminal discovery of the tightly balanced network
(van Vreeswijk and Sompolinsky, 1996, 1998) solved a key
problem in theoretical neuroscience: how can neurons re-
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main in the fluctuation-driven regime, so that they have
irregular firing with reasonable firing rates, without re-
quiring fine tuning of parameters? The answer was that
when external and network inputs were very large, the
network’s dynamics could robustly tightly balance the
excitation and inhibition that neurons receive, leaving a
net input a�er cancellation that is negligibly small rela-
tive to the factors that cancel. This allows both the mean
and standard deviation of the net input to be comparable
to the distance from rest to threshold despite the very
large size assumed for the factors that cancel, yielding
the fluctuation-driven regime. This achievement along
with the model’s mathematical tractability have made it
a popular model for the theoretical study of neural cir-
cuits. However, for all of the reasons stated above, this
tightly balanced regime does not seem to match observa-
tions of at least sensory cortical anatomy and physiology.

The loosely balanced solution shows that, when neuronal
input/output functions are supralinear, the same dynam-
ical balancing can arise from network dynamics without
fine tuning, but in a regime in which external and net-
work inputs are not large. Instead, the balancing arises
when these inputs, and the net input remaining a�er can-
cellation of excitatory and inhibitory input, are all com-
parable in size to one another and to the distance from
rest to threshold. Furthermore, for weak inputs this same
scenario produces a weakly-coupled, feedforward-driven
regime which explains the observation that summation
changes from sublinear, or suppressive, for stronger stim-
uli to linear, or facilitative, for weak inputs.

The tightly balanced network demonstrated that a net-
work could self-consistently generate its own variability.
As we showed in the section “How large is

√
Kn?”, the

loosely balanced regime can also generate realistic levels
of variability. However, biologically there is no need for
the network to generate all of its own variability, as all
inputs to cortex are noisy (and there are other sources of
noise such as stochasticity of cellular and synaptic mech-
anisms (Mainen and Sejnowski, 1995; O’Donnell and van
Rossum, 2014; Schneidman et al., 1998) and input corre-
lations (DeWeese and Zador, 2006; Stevens and Zador,
1998)). In at least one case (Sadagopan and Ferster,
2012), the noise derived from the cortical area’s input was
shown to be large enough to potentially fully account for
the noise seen in the cortical neurons. In the SSN net-
work, the network will amplify input noise in the weakly
coupled regime, and then decrease noise for increasingly
strong inputs in the strongly coupled, loosely balanced

regime; the result is that, for higher input strengths, noise
can be reduced to the level driven by the inputs (e.g., see
Fig. 2D of Hennequin et al., 2018), consistent with the ob-
servations of Sadagopan and Ferster (2012).

In conclusion, we believe that at least sensory, and per-
haps all of, cortex operates in a regime in which the in-
hibition and excitation neurons receive are loosely bal-
anced. This along with the supralinear input/output
function of individual neurons and simple assumptions
on connectivity explains a large set of cortical response
properties. A key outstanding question is the computa-
tional function or functions of this loosely balanced state
and the response properties it creates (e.g., see Echeveste
et al., 2019; G. Barello and Y. Ahmadian, in preparation).

Appendix 1: Nomenclature for balanced solu-
tions

There is no standard nomenclature for describing bal-
anced solutions. Here we have used loose vs. tight bal-
ance to describe, given systematic cancellation, whether
the remainder a�er cancellation is comparable to, or
much smaller than, the factors that cancel.

Deneve and Machens (2016) used loose balance to mean
that fast fluctuations of excitation and inhibition are un-
correlated, although they are balanced in the mean, as
in the sparsely-connected network of van Vreeswijk and
Sompolinsky (1998); and used tight balance to mean that
fast fluctuations of excitation and inhibition are tightly
correlated with a small temporal o�set, as in the densely-
connected network of Renart et al. (2010) and in the
spiking networks of Deneve, Machens and colleagues in
which recurrent connectivity has been optimized for e�i-
cient coding (Barre� et al., 2013; Boerlin et al., 2013; Bour-
doukan et al., 2012). All of these networks are tightly bal-
anced under our definition.

Hennequin et al. (2017) also defined balance to be tight
if it occurs on fast timescales, and loose otherwise, but
they implied that this is equivalent to our definition, that
tight balance means the remainder is small compared to
the factors that cancel, and loose balance means the re-
mainder is comparable to the factors that cancel. The im-
plied equivalence rests on the fact that tight balance un-
der our definition produces very large (i.e., O(

√
K )) nega-

tive eigenvalues (in linearization about the fixed point)
which means very fast dynamics, approaching instan-
taneous population response as K and hence negative
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eigenvalues go to infinity. We point out, however, that
loose balance under our definition can produce negative
eigenvalues large enough to produce quite fast dynamics,
with e�ective time constants on the order of single neu-
rons’ membrane time-constant, or even as small as a few
milliseconds, depending on parameters.

An additional source of confusion is that there are two
forms of fast fluctuations, with di�erent behaviors. Fast
fluctuations can be shared (correlated) across neurons,
or they can be independent. The large negative eigen-
values in tightly balanced networks (in our definition) af-
fect shared fluctuations corresponding to eigen-modes in
which the activities of excitatory and inhibitory neurons
fluctuate coherently. Thus, shared fluctuations are bal-
anced on fast time scales. By contrast, spatial activity
pa�erns in which neurons fluctuate independently are
largely una�ected by those eigenvalues, and need not be
balanced.

Fluctuations due to changes in population mean rates of
the external input are shared, and so this form of fluctu-
ation is followed on fast time scales in all balanced net-
works (at finite rates in loosely balanced networks, and
approaching instantaneous following in tightly balanced
networks). Fluctuations also arise from network and ex-
ternal neuronal spiking noise. In networks with sparse
connectivity (van Vreeswijk and Sompolinsky, 1998), this
yields independent fluctuations in di�erent neurons, and
thus independent fluctuations of excitation and inhibi-
tion on fast time scales (though their means are bal-
anced). In networks with dense connectivity (Renart
et al., 2010), these spiking fluctuations become shared
fluctuations due to common inputs arising from the
dense connectivity, and so in these networks excitation
and inhibition are balanced on fast time scales. To sum-
marize, all balanced networks will balance shared fluctu-
ations, such as those due to changing external input rates,
on fast time scales; but excitation and inhibition can
nonetheless be unbalanced on fast time scales in sparse
networks, due to independent fluctuations induced by
spiking noise.

To conclude, we would argue for a future standardized
terminology for dynamically-induced balancing of exci-
tation and inhibition, in which “loose” vs. “tight” balance
refer to our definition as to whether the remainder af-
ter cancellation is comparable to, or much smaller than,
the factors that cancel. We suggest the use of “temporal”
vs. “mean” balance to refer to whether or not excitation

and inhibition are balanced on fast time scales, which
depends on whether there are substantial shared input
fluctuations across neurons. “Finite” vs. “instantaneous”
time scales of balancing can distinguish whether relax-
ation rates – the rates of balancing shared fluctuations –
are moderately-sized vs. very large.

Appendix 2: When do balanced solutions arise?

We consider a rate model in which the neuron’s in-
put/output function is described by some function f (x),
which is zero for x ≤ 0 and monotonically increasing for
x ≥ 0. Then the network’s steady-state firing rate rSS for
a steady input I is

rSS = f (WrSS + I) (14)

where f acts element by element on its argument, that is,
f (u) is a vector whose ith element is f (µi) (the f ’s might
di�er for di�erent neurons, which we neglect for simplic-
ity). As before, we let ψ = ‖W‖ and c = ‖I‖. We define
the dimensionless and O(1) matrix J = W/ψ and vec-
tor g = I/c, so that J and g represent the relative synaptic
strengths and relative input strengths, respectively, while
their overall magnitudes and dimensions are in ψ and c.
Then, as in Ahmadian et al. (2013), we can define the di-
mensionless variable y = ψ

c r, and Eq. 14 can be rewri�en

ySS =
ψ

c
f (c(JySS + g)) (15)

Note that this equation ensures that ySS ≥ 0. Note also
that, when f (x) = (x)p+ ((x)+ = x , x ≥ 0; = 0, otherwise),
then this equation can be rewri�en ySS = α (JySS + g)p+
where α = ψcp−1. This is the origin of the dimensionless
constant α mentioned in the main text.

If we define f −1(0) = 0, then because f is monotoni-
cally increasing for non-negative arguments, it is invert-
ible over that range, i.e. f −1(x) is defined for x ≥ 0. We
can then rewrite Eq. 15 as

1
c
f −1

(
c
ψ
ySS
)

= (JySS + g)+ (16)

If we assume

(JySS + g)i ≥ 0 for all i, (17)

that is, if (JySS)i ≥ −(g)i for all i, then we can replace
the right side of Eq. 16 with JySS + g (without the ()+).
This condition, Eq. 17, is a condition on the solution ySS,
which we must check is self-consistently met for any so-
lution we derive under this assumption. Note also that,
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from Eq. 15, the condition (JySS + g)i > 0 is met if and
only if (ySS)i > 0, so if we find a solution ySS that has
all positive elements, it will automatically satisfy Eq. 17.
Given this assumption, a bit of further manipulation then
yields

ySS = −J−1g +
1
c
J−1f −1

(
c
ψ
ySS
)

(18)

The first term, y0SS ≡ −J−1g, is the balancing term, which
cancels the external input g, i.e. (Jy0SS + g) = 0. If the sec-
ond term becomes small relative to the first in some limit,
then the tightly balanced solution, ySS ≈ −J−1g or equiv-
alently rSS ≈ −W−1I, exists in that limit, while a loosely
balanced solution (balance index O(1)) arises when the
2nd term is comparable in size to the first. (More careful
analysis is needed to ensure that this solution is stable,
and that there are not also other solutions.) Note that
Eq. 18 gives an equation of the form Eq. 13 when we (1)
Take f −1(x) = (x)1/p+ and (2) Multiply both sides of Eq. 18
by c/ψ to convert ySS to rSS.

Assuming all the elements of y0SS ≡ −J−1g are> 0, a self-
consistent solution in which the second term in Eq. 18
becomes small can be found in at least three cases:

• If c and ψ are scaled by the same factor, which
becomes arbitrarily large, then there is a self-
consistent solution in which ySS is converging to
−J−1g. Then the f −1 factor is not changing (except
for the small changes due to the changes in ySS as
it converges), but it is multiplied by the factor 1

c ,
which becomes arbitrarily small; thus the second
term becomes arbitrarily small, regardless of the
particular structure of f . This is the case studied
for the tightly balanced solution, where both c and
ψ are taken proportional to

√
K with K very large.

(Note that the mean field equations derived in (van
Vreeswijk and Sompolinsky, 1998) di�er from the
generic steady-state rate equations, Eq. (14), in that
they also involve the self-consistently calculated
input fluctuation strengths, σA; the scaling argu-
ment given here nevertheless holds in that case
too.)

• Suppose c is scaled for fixed ψ, which is the bio-
logical case in which synaptic strengths are fixed
and the strength of the external input is varied
from small to large. Then if f −1(x) grows more
slowly than linearly in increasing x , then the 1

c
factor shrinks faster than the f −1 term grows, so

again there is a self-consistent solution in which
ySS is converging to −J−1g and the second term
becomes arbitrarily small with increasing c. This is
the case studied for the loosely balanced solution
in the SSN, in which f (x) grows supralinearly with
x and therefore f −1(x) grows sublinearly with x .

• We again suppose c is scaled for fixed ψ, but now
imagine that f −1(x) grows faster than linearly in in-
creasing x , i.e. f (x) is sublinear (for example, f (x) =
(x)p+ for 0 < p < 1). Then there is a self-consistent
solution in which y → −J−1g as c → 0, with the
second term in Eq. 18 going to zero as c → 0. This
case is the reverse of the SSN: the strongly coupled,
balanced regime arises for c → 0, while the weakly
coupled, feedforward-driven regime arises for large
c.

In sum, if the elements of−J−1g are positive, then a self-
consistent tightly-balanced solution arises for any f if c
and ψ are scaled together by an increasing factor; for
supralinear f if c is scaled by an increasing factor; or for
sublinear f if c is scaled by a decreasing factor. In all of
these cases, for moderate sizes of the scaled parameter(s)
(e.g., for the SSN, for α = O(1)) such that the second term
of Eq. 18 is comparable in size to the first, a loosely bal-
anced solution should arise. Note that, since rSS = c

ψySS,
then from Eq. 18 the net input a�er balancing should
grow with increasing external input c as f −1(c); this is
sublinear in c for the SSN case of supralinear f .

If one considers a two-populationmodel – a population of
E cells and a population of I cells, with each population’s
average rate represented by a single variable – then con-
ditions on J and g can be defined such that the elements
of−J−1g are positive and the balanced fixed point is sta-
ble and is the only fixed point (Ahmadian et al., 2013;
Kraynyukova and Tchumatchenko, 2018; van Vreeswijk
and Sompolinsky, 1998). On the other hand, when the
E element of −J−1g is negative, Eq. 18 cannot serve as a
basis for an asymptotic expansion with the leading term
−J−1g, and the tightly balanced state does not exist.
(Given (−J−1g)E < 0, if the tightly balanced state ex-
isted – meaning that the second term of Eq. 18 becomes
much smaller than the first while Eq. 18 is applicable –
then ySS must have crossed zero to become negative, but
once that has happened we could no longer proceed past
Eq. 16 and Eq. 18 would no longer be applicable, which is
a contradiction; hence the tightly balanced state cannot
exist.) However, the loosely balanced state can still arise
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in this case in a broad parameter regime of J and g, and
can be found as the fixed point of the iterative equation,

ySS(t) = −J−1g+ 1
c J
−1f −1

(
c
ψySS(t − 1)

)
, given appropri-

ate initial conditions ySS(0); see Ahmadian et al. (2013). In
this case, with increasing c, rE grows, but then saturates
and starts decreasing, and eventually is pushed down to
0. However, if we assume that the maximal external input
(i.e. the maximal c; for example, themaximal firing rate of
the thalamic input to a primary sensory cortical area) can
only drive rE to saturation or slightly beyond, this repre-
sents a viable model of cortical systems (Ahmadian et al.,
2013; Hennequin et al., 2018; Rubin et al., 2015).

A two-population model accurately describes the behav-
ior of an unstructured model with many E and I neu-
rons, i.e. with random connectivity and with neurons in
each population receiving comparable stimulus inputs. In
some cases this model also can form a good approxima-
tion to the behavior of a multi-neuron circuit with struc-
tured connectivity and stimulus selectivity (Ahmadian
et al., 2013). More generally, though, in such a structured
circuit with localized connectivity, for larger/stronger lo-
calized stimuli, some set of neurons (e.g., neurons not
selective for the stimulus) may eventually receive a net
inhibition and become silent, meaning that the condi-
tion of Eq. 17 is not met and Eq. 18 does not apply.
(However, if the connectivity is translation-invariant –
the same at any position in the model – and the ex-
ternal input extends more narrowly than the network
connections, then a balanced fixed point can still be at-
tained, Rosenbaum and Doiron, 2014.) Nonetheless, we
find in simulations (Ahmadian et al., 2013; Hennequin
et al., 2018; Rubin et al., 2015) that for reasonable stimu-
lus input strengths, SSN behavior is reasonably described
by the two-population model, in that (1) there is a transi-
tion with increasing input strength from a weakly cou-
pled, feedforward-driven regime to a strongly-coupled,
loosely balanced regime in which the input to excited
neurons grows sublinearly as a function of the external in-
put strength; and (2) if we define theW and g of the two-
population model as describing the net input received by
a cell in the larger, structured model – e.g., WEE repre-
sents the mean summed synaptic strength from excita-
tory cells to a single excitatory cell, and gE represents
the mean external input received by stimulus-selective
excitatory cells – then reasonably good insight into the
operating regime of the larger model can be obtained
from the analysis of the two-population model presented

here and, in much more detail, in Ahmadian et al. (2013);
Kraynyukova and Tchumatchenko (2018).

We believe the same overall analysis of a transition from
a weakly coupled regime to a strongly coupled, loosely
balanced regime will apply to multi-population models
incorporating multiple subtypes of inhibitory cells (e.g.
Garcia Del Molino et al., 2017; Kuchibhotla et al., 2017;
Litwin-Kumar et al., 2016), but more detailed aspects
of the analysis of the two-population model (Ahmadian
et al., 2013; Kraynyukova and Tchumatchenko, 2018) need
to be generalized to that case.
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